Superplastic deformation in carbonate apatite ceramics under constant compressive loading for near-net-shape production of bioresorbable bone substitutes.

نویسندگان

  • Masanori Adachi
  • Nobukazu Wakamatsu
  • Yutaka Doi
چکیده

To produce carbonate apatite (CAP) ceramics with the desired complex shapes using superplastic deformation, deformation behavior of CAP ceramics under constant loading as well as physical properties after deformation were evaluated. Sintered CAP ceramics were plastically deformed in an electric furnace attached to a universal hydraulic testing machine under a constant load. CAP ceramics subjected to an initial compressive pressure of 10 MPa showed an appreciable amount of plastic deformation at temperatures ranging from 720 to 800 degrees C. Plastic deformation increased with increasing temperature from about 10% to 70% after two hours of loading. X-ray diffraction analysis and SEM observation further revealed that some CAP crystals were elongated and aligned with the c-axis normal to the loading direction during superplastic deformation. It was thus concluded that a marked plastic deformation of about 70% at 800 degrees C would be sufficient for near-net-shape production of bioresorbable CAP bone substitutes with complex shapes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cell-mediated bioresorption of sintered carbonate apatite in rabbits.

Bone apatite contains carbonate and is therefore not pure hydroxyapatite. We have successfully developed sintered carbonate apatite (CA) with a concentration of carbonate of 6 weight% and have evaluated its osteoconductive and bioresorption characteristics. Cylindrical porous sintered CA and sintered hydroxyapatite (HA) measuring 4 x 4 mm with a porosity of 20% were implanted into surgically-cr...

متن کامل

CRYSTALLIZATION AND SINTERABILITY BEHAVIOR OF BIORESORBABLE CaO-P2O5-Na2O-TiO2 GLASS CERAMICS FOR BONE REGENERATION APPLICATION

Abstract:Some types of glass and glass ceramics have a great potential for making bone tissue engineering scaffolds, drug carrier and bone cements as they can bond to host bone, stimulate bone cells toward osteogenesis, and resorb at the same time as the bone is repaired. Calcium phosphate glass ceramics have very attractive properties that allow them to use in bone tissue engineering. Calcium ...

متن کامل

Comparison of Purity and Properties of Hydroxyl Carbonate Apatite Extracted from Natural Thigh Bone by Different Physio-chemical Methods

New approaches to extracting natural hydroxyl carbonate apatite from bio waste of bovine bones cortical femur have been developed. To extract pure and natural bio ceramics, three different treatments have been applied: 1-Calcination heat treatment at temperature of 700 , 2-alkaline hydrothermal at temperature of 275 and 3-Pressurized low polarity water at temperature of 250 . Raw bovine bone an...

متن کامل

Numerical analysis and design of industrial superplastic forming

In the aerospace industry, the production of structural shell components with a prescribed thickness distribution by superplastic forming requires the specification of the initial thickness profile in the undeformed sheet. To this purpose, a finite element simulation methodology developed previously for the analysis of superplastic deformation processes along with the optimum monitoring of the ...

متن کامل

Fabrication and Physical Evaluation of Gelatin-Coated Carbonate Apatite Foam

Carbonate apatite (CO₃Ap) foam has gained much attention in recent years because of its ability to rapidly replace bone. However, its mechanical strength is extremely low for clinical use. In this study, to understand the potential of gelatin-reinforced CO₃Ap foam for bone replacement, CO₃Ap foam was reinforced with gelatin and the resulting physical characteristics were evaluated. The mechanic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Dental materials journal

دوره 27 1  شماره 

صفحات  -

تاریخ انتشار 2008